On Quotients of Moving Average Processes with Infinite Mean

نویسنده

  • MAREK KANTER
چکیده

In this paper it is shown that one can estimate the sum of the weights used to form a stationary moving average stochastic process based on nonnegative random variables by taking the limit in probability of suitable quotients, even when the random variables involved have infinite expectation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Average Processes with Infinite Variance

The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...

متن کامل

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

The effect of memory on functional large deviations of infinite moving average processes

Abstract The large deviations of an infinite moving average process with exponentially light tails are very similar to those of an i.i.d. sequence as long as the coefficients decay fast enough. If they do not, the large deviations change dramatically. We study this phenomenon in the context of functional large, moderate and huge deviation principles.

متن کامل

Long Strange Segments, Ruin Probabilities and the Effect of Memory on Moving Average Processes

We obtain the rate of growth of long strange segments and the rate of decay of infinite horizon ruin probabilities for a class of infinite moving average processes with exponentially light tails. The rates are computed explicitly. We show that the rates are very similar to those of an i.i.d. process as long as moving average coefficients decay fast enough. If they do not, then the rates are sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010